GENETICS | INVESTIGATION Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models
نویسندگان
چکیده
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies.
منابع مشابه
Gene Level Meta-Analysis of Quantitative Traits by Functional Linear Models.
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models...
متن کاملMeta-analysis of Complex Diseases at Gene Level with Generalized Functional Linear Models.
We developed generalized functional linear models (GFLMs) to perform a meta-analysis of multiple case-control studies to evaluate the relationship of genetic data to dichotomous traits adjusting for covariates. Unlike the previously developed meta-analysis for sequence kernel association tests (MetaSKATs), which are based on mixed-effect models to make the contributions of major gene loci rando...
متن کاملAssociation of ESRα Gene Pvu II T>C, XbaI A>G and BtgI G>A Polymorphisms with Knee Osteoarthritis Susceptibility: A Systematic Review and Meta-Analysis Based on 22 Case-Control Studies
Background: Many studies have reported the association of estrogen receptor α gene (ESRα) ESRα PvuII T>C, XbaI A>G and BtgI G>A polymorphisms with Knee osteoarthritis (KOA) risk, but the results remained controversial. In order to drive a more precise estimation, the present systematic review and meta-analysis was performed to investigate the association between ESRα polymorphisms and KOA susce...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملAssociation between the Functional Polymorphism of Vascular Endothelial Growth Factor Gene and Breast Cancer: A Meta-Analysis
The vascular endothelial growth factor (VEGF) gene single-nucleotide polymorphism involved in the regulation of the protein levels has been implicated in breast cancer. However, the published studies have produced contentious and controversial results. Herein, we performed a meta-analysis (from January to October 2013); to further evaluate the association between +936 C/T polymorphism and the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015